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BACKGROUND:Climate change impacts have
now been documented across every ecosystem
on Earth, despite an average warming of only
~1°C so far. Here, we describe the full range
and scale of climate change effects on global
biodiversity that have been observed in nat-
ural systems. To do this, we identify a set of
core ecological processes (32 in terrestrial and
31 each in marine and freshwater ecosystems)
that underpin ecosystem functioning and sup-
port services to people. Of the 94 processes

considered, 82% show evidence of impact from
climate change in the peer-reviewed literature.
Examples of observed impacts from meta-
analyses and case studies go beyond well-
established shifts in species ranges and changes
to phenology and population dynamics to in-
clude disruptions that scale from the gene to
the ecosystem.

ADVANCES: Species are undergoing evolu-
tionary adaptation to temperature extremes,

and climate change has substantial impacts
on species physiology that include changes in
tolerances to high temperatures, shifts in sex
ratios in species with temperature-dependent
sex determination, and increased metabolic
costs of living in a warmer world. These phys-
iological adjustments have observable impacts
on morphology, with many species in both
aquatic and terrestrial systems shrinking in
body size because large surface-to-volume ratios
are generally favored under warmer conditions.
Other morphological changes include reduc-
tions in melanism to improve thermoregula-
tion, and altered wing and bill length in birds.

Broader-scale responses
to climate change include
changes in the phenology,
abundance, and distribu-
tion of species. Temperate
plants are budding and
flowering earlier in spring

and later in autumn. Comparable adjustments
have been observed in marine and freshwater
fish spawning events and in the timing of sea-
sonal migrations of animals worldwide. Changes
in the abundance and age structure of popula-
tions have also been observed, with widespread
evidence of range expansion in warm-adapted
species and range contraction in cold-adapted
species. As a by-product of species redistributions,
novel community interactions have emerged.
Tropical and boreal species are increasingly
incorporated into temperate and polar commu-
nities, respectively, and when possible, lowland
species are increasingly assimilating into moun-
tain communities. Multiplicative impacts from
gene to community levels scale up to produce
ecological regime shifts, in which one ecosys-
tem state shifts to an alternative state.

OUTLOOK: The many observed impacts of
climate change at different levels of biological
organization point toward an increasingly
unpredictable future for humans. Reduced ge-
netic diversity in crops, inconsistent crop yields,
decreased productivity in fisheries from re-
duced body size, and decreased fruit yields
from fewer winter chill events threaten food
security. Changes in the distribution of dis-
ease vectors alongside the emergence of novel
pathogens and pests are a direct threat to hu-
man health as well as to crops, timber, and
livestock resources. Humanity depends on in-
tact, functioning ecosystems for a range of
goods and services. Enhanced understanding
of the observed impacts of climate change on
core ecological processes is an essential first
step to adapting to them and mitigating their
influence on biodiversity and ecosystem ser-
vice provision.▪
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Climate change impacts on ecological processes in marine, freshwater, and terrestrial
ecosystems. Impacts can be measured on multiple processes at different levels of biological
organization within ecosystems. In total, 82% of 94 ecological processes show evidence of
being affected by climate change. Within levels of organization, the percentage of processes
impacted varies from 60% for genetics to 100% for species distribution.
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Most ecological processes now show responses to anthropogenic climate change. In terrestrial,
freshwater, andmarineecosystems, species are changinggenetically, physiologically,morphologically,
and phenologically and are shifting their distributions,which affects food webs and results in new
interactions. Disruptions scale from the gene to the ecosystem and have documented consequences
for people, including unpredictable fisheries and crop yields, loss of genetic diversity in wild crop
varieties, and increasing impacts of pests and diseases. In addition to themore easily observed
changes, such as shifts in flowering phenology, we argue that many hidden dynamics, such as
genetic changes, are also taking place. Understanding shifts in ecological processes can guide
human adaptation strategies. In addition to reducing greenhouse gases, climate action and
policy must therefore focus equally on strategies that safeguard biodiversity and ecosystems.

A
tmospheric concentrations of greenhouse
gases from burning fossil fuels and de-
forestation are approaching levels that have
not been detected in the past 20 million
years (1). This has altered the chemical

composition of the Earth’s atmosphere, oceans,
and fresh waters (2). As a result, temperatures

in the upper ocean and on land are now ~1°C
higher than in preindustrial times, and temper-
ature, wind, and precipitation regimes have
become more variable and extreme (3, 4). These
changes are having clear impacts on planetary
biophysical processes, including desalinization
and acidification of the world’s oceans (5) and
melting of permafrost, ice sheets, and glaciers
(6, 7). Lakes and rivers have increased in temper-
ature, altering seasonal patterns of mixing and
flows (8).
Changing climate regimes have been an im-

portant driver of natural selection in the past
(9) and, as in the past, species are responding
to the current human-induced climate event in
various ways. Previous reviews have covered many
of the more obvious changes in species ranges,
phenologies, and population dynamics (10–15)
but have usually focused on one ecological sys-
tem at a time. Here, we discuss the full range
and scale of climate change effects on biota,
including some of the less obvious disruptions
observed in natural systems. We present exam-
ples of case studies of observed impacts across
terrestrial and aquatic biomes and find evidence
that climate change is now affecting most biolog-
ical and ecological processes on Earth—spanning
genetics, organismal physiology and life-history,
population distributions and dynamics, com-
munity structure, and ecosystem functioning
(Fig. 1 and table S1). People depend on intact,
functioning ecosystems for a range of goods
and services, including those associated with
climate adaptation (16). Understanding the ob-
served impacts of current climate change on
core ecological processes is therefore an essen-
tial first step in humans planning and adapting
to changing ecosystem conditions.

Although inherently different, marine, fresh-
water, and terrestrial realms share a common
hierarchy of levels of biological organization,
ranging from genes to organisms, populations,
species, communities, and ecosystems. Broadly
adapting from Bellard et al. (17), we screened
the literature (supplementary materials) to eval-
uate evidence that climate change is affecting
ecological components across different levels of
biological organization, each of which comprises
a core set of ecological processes (Fig. 1, fig. S1,
and table S1). We identify a set of core ecolog-
ical processes on Earth (32 in terrestrial and 31
each in marine and freshwater), which to-
gether facilitate ecosystem functioning that
supports services to people (17). These processes
include changes in genetic diversity (genetics),
metabolic rates (physiology), body size (morphol-
ogy), timing of migration (phenology), recruitment
(population dynamics), range size (distribution),
loss of synchronization (interspecific relation-
ships), and biomass (productivity) (17). Because
our main goal is to assess what processes are
affected by climate change, we define “impact”
on each process as an observed change in that
process linked to climate change. We do not
differentiate between “positive” (adaptive, buf-
fering, or mitigating) and “negative” (stress or
damage) responses because responses may be
positive at one level of biological organization
(such as genetic adaptation to climate change)
but negative at another (such as reduced ge-
netic variation and capacity to deal with other
stressors). We then consider the relevance of
the affected ecological processes in human sys-
tems and illustrate observed impacts to ecosys-
tem services such as food and resource security
(fisheries, agriculture, forestry, and livestock pro-
duction), human health, and hazard reduction.

Ecological impacts of climate change

Organisms
Genetics

There is now growing evidence that species are
undergoing evolutionary adaptation to human-
induced climate change. For example, between
the 1960s and 2000s the water flea (Daphnia
magna) evolved to cope with higher thermal
extremes in the UK (18), and cornflower (Centaurea
cyanus) life history traits have recently evolved
in response to warmer springs across northern
France (19). Other examples include the evolu-
tion of earlier migration timing in anadromous
pink salmon (Oncorhynchus gorbuscha), with
decreased frequency of incidence of a genetic
marker that encodes for late migration (20).
Time-series data that control for physiological
acclimatization also show strong evidence for
genetic responses to climate change. For example,
Bradshaw and Holzapfel showed that genotypic
values for the critical day length that induces dia-
pause in the pitcher plant mosquito (Wyeomyia
smithii) change with latitude, and that the lati-
tudinal relationship has changed over the period
from 1972 to 1996 (21). Onset of diapause now
occurs later, which is consistent with a longer
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Fig. 1. Climate change impacts on Earth’s marine, terrestrial, and fresh-
water systems. The presence of observed impacts on the different
levels of biological organization and its inner components across the
Earth’s marine, terrestrial, and freshwater ecosystems. The denomina-
tor represents the total number of processes that we considered for
each group, and the numerator is the number of these processes with
evidence of impact (a complete list of processes is provided in fig. S1
and table S1). In total, 82% of all (n = 94) ecological processes that
were considered have observed evidence of impact by climate change.

Each process has at least one supporting case study. The asterisk in-
dicates whether the affected process was assessed in a meta-analysis
in addition to case studies. Thus, double-asterisk indicates that two
processes were assessed in at least one meta-analysis. Confidence that
the observed impact can be attributed to climate change was assigned
for each level of organization and ranges from very low, low, medium,
high, to very high; this assessment is based on tables 18-7, 18-8, and 18-11
in (13). The darkest circle indicates confidence level with the most litera-
ture support. IM
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growing season under warmer conditions. Oce-
anic phytoplankton have adapted to a temper-
ature change of +0.73°C associated with 15 years
of climate warming in the Gulf of Cariaco,
Venezuela, by adjusting their thermal niche by
+0.45°C (22). Although such evidence from
small organisms with short generation times
is accumulating, we found little documented
evidence of evolutionary change from species
with longer generation times such as birds,
mammals, and trees (14, 23), although adapta-
tion appears to be possible in some long-lived
reef corals (24).
Changes in species ranges have altered or

created new “hybridization zones” across the
planet. For example, in North America, hybrid
zones between black-capped (Poecile atricapillus)
and Carolina chickadees (P. carolinensis) are shift-
ing in response to warmer winter temperatures
(25), and because the southern flying squirrel
(Glaucomys volans) has expanded its range north-
ward in eastern North America, it is now hybrid-
izing with the northern flying squirrel (G. sabrinus)
(26). In North American rivers and streams,
hybridization between invasive rainbow trout
(Oncorhynchus mykiss) and native cutthroat trout
(O. clarkia) has increased in frequency as the
former expand into warming waters (27). Such hy-
bridization events have also been observed in
somemarine fishes, such as the coastal West Coast
dusky cob (Argyrosomus coronus), and are ex-
pected to increase as species shift their ranges
poleward in response to rapidly warming ocean
conditions (28).

Physiology

Many species display temperature-driven trait
plasticity in physiological processes such as
thermal optima (29). Whereas some responses,
such as acclimation to high temperatures, max-
imize fitness, others can reflect failure to cope
with temperature stress and other climate-
mediated changes. These responses can occur
within a generation or between generations
through maternal or epigenetic effects (30).
There is some observational evidence that

warming has affected temperature-dependent
sex determination (TSD) of species in marine and
terrestrial systems. Snake pipefish (Entelurus
aequoreus) in the northeastern Atlantic have
altered their operational sex ratios and reproduc-
tive rates as a consequence of warmer sea surface
temperatures (31). Most evidence for impacts
on TSD in marine systems, however, is derived
from experimental studies, which provide strong
support for TSD changes in sea turtles and various
fish species (32, 33). In terrestrial and freshwater
systems, TSD has been implicated in masculin-
ization and feminization, respectively, of lizard
and turtle populations (34, 35).
In marine systems, physiological responses to

both climate warming and changing ocean con-
ditions are widespread (36, 37). Matching field
and laboratory data for the eelpout (Zoarces
viviparus) show increased metabolic costs asso-
ciated with warming in the North and Baltic Seas
(38). In aquatic systems, warming increases oxy-

gen demand but decreases oxygen content of the
water, resulting in substantial metabolic costs
(39). Although climate change per se does not
cause acidification of the oceans, both arise di-
rectly from higher atmospheric carbon dioxide,
and experimental evidence has raised concerns
regarding negative effects of ocean acidification
on calcification, growth, development, and sur-
vival of calcifying organisms (12). For example,
acidification has led to extensive shell dissolu-
tion in populations of the pteropod Limacina
helicina in northwest North America and in the
Southern Ocean off Antarctica (40, 41).

Morphology

Individuals in some species are becoming smaller
with increasing warming because large surface-
to-volume ratios are generally favored under
warmer conditions (42)—a phenomenon that is
linked to standard metabolic principles (43). In the
Appalachian Mountains, six species of Plethodon
woodland salamander have undergone, on aver-
age, an 8% reduction in body size over the past
50 years (44). Similarly, three species of passer-
ine birds from the northeast United States show
an average 4% decrease in wing length correlated
with recent warming (45), and the long-distance
migrant bird the red knot (Calidris canutus) is now
producing smaller offspring with smaller bills,
which reduces survival in juveniles because of
altered foraging success on underground bivalves
(46). In general, decreasing body size with warm-
ing is expected, but evidence from cold, high-
altitude habitats suggests that increased primary
productivity and longer growing seasons from
warming have led to increased body size in some
mammal species such as American marten (Martes
americana) and yellow-bellied marmot (Marmota
flaviventris) (47, 48). In South Australia, leaf width
in soapberry (Dodonaea viscosa) has decreased
compared with the ancestral condition docu-
mented under cooler temperatures 127 years ago
(49). Other climate change impacts on morphol-
ogy include color changes in butterflies, dragon-
flies, and birds (50–53) and pronounced changes
in skull shape in the alpine chipmunk (Tamias
alpinus) (54).

Population
Phenology

For most species, migrations and life-history
processes (such as budding and flowering in
plants, hatching and fledging in birds, and hi-
bernation in mammals) are closely tied to seasonal
and interannual variation in climate, and there
is now overwhelming evidence that both have
been affected by climate change (10, 37, 55, 56).
Across marine, freshwater, and terrestrial eco-
systems, spring phenologies have advanced by
2.3 to 5.1 days per decade (10, 57). A combination
of climate warming and higher atmospheric CO2

concentrations has extended the growing period
of many plant populations (58). In a large global
analysis, which included 21 phenological metrics
such as leaf-off and leaf-on dates and growing-
season length, plant phenologies were found to
have shifted by more than 2 standard deviations

across 54% of Earth’s land area during the past
three decades (59).
In marine and freshwater systems, advances

in the timing of annual phytoplankton blooms—
the basis for many aquatic food webs—have
occurred more rapidly than temporal shifts in
terrestrial plants (37, 60). Such changes in plank-
ton phenology have been attributed to increases
in water temperatures, reduction in the duration
of ice cover, and the alteration of the seasonal
duration of thermal stability or stratification of
the water column.
Shifts in spawning times have been documented

for 43 fish species in the northeast Pacific Ocean
from 1951 to 2008, with earlier spawning asso-
ciated with increased sea surface temperature
and later spawning associated with delays in
seasonal upwelling of nutrients toward the ocean
surface (61). Similar impacts on breeding have
been observed in terrestrial and marine bird
species (62).
Changes in the timing of migration events have

been extensively documented, including advances
in spring arrival dates of long-distance migratory
bird species in Europe, North America, and Aus-
tralia (63–65). Similarly, long-term data on many
amphibians and mammals have shown advance-
ments in spring and delays in autumn migration
(66–68) and altered peak calling periods of male
amphibians (67–69). In the largest meta-analysis
to date of phenological drivers and trends among
species in the southern hemisphere, 82% of ter-
restrial data sets and 42% of marine data sets
demonstrated an advance in phenology asso-
ciated with rising temperature (70).

Abundance and population dynamics

Acute temperature stress can have severe neg-
ative effects on population dynamics such as
abundance, recruitment, age structure, and sex
ratios. Meta-analyses across thousands of spe-
cies report that ~80% of communities across
terrestrial, freshwater, and marine ecosystems
exhibited a response in abundance that was in
accordance with climate change predictions
(10, 70). In a meta-analysis of marine species,
52% of warm-adapted species increased in abun-
dance, whereas 52% of cold-adapted species
decreased (71). Temperature spikes may cause
mass mortality of key ecosystem engineers in
both temperate and tropical oceans. Excessive
heat kills canopy-forming macroalgae in tem-
perate marine systems (72) and causes bleach-
ing and mass mortality of corals in the tropics
(73). Reductions in sea ice extent have caused
declines in abundances of ice-affiliated species in
the Arctic [for example, ivory gulls (Pagophila
eburnea), ringed seals (Pusa hispida), and polar
bears (Ursus maritimus) (74)] whereas in some
cases, such as on Beaufort Island in the southern
Ross Sea, the loss of ice from receding glaciers
resulted in increased abundances of Adélie pen-
guins (Pygoscelis adeliae) (75). In the United States,
the bull trout (Salvelinus confluentus) has lost
>10% of its spawning grounds in central Idaho
over the past 13 years because of increased water
temperatures (76), while the brown trout (Salmo
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trutta) has lost habitat in the Swiss Alps (77). In
western Canada, reduced survival of adult migrat-
ing Fraser River sockeye salmon (Oncorhynchus
nerka) has been observed with increased water
temperatures (78), and in eastern Canadian lakes,
golden-brown algae dramatically increased in abun-
dance as water temperature increased 1.5°C dur-
ing the latter part of the 20th century (79). Some
of the best evidence for climate-change impacts
on the abundance of terrestrial species comes
from analyses of bird population trends derived
from systematic monitoring schemes in Europe,
with warm-adapted species having increased
in abundance on average since the 1980s and
cold-adapted species having declined (80).
Climate change can increase the abundance of

temperature-sensitive disease vectors, with subse-
quent effects on disease outbreaks. In the African
Serengeti, there is some evidence that a com-
bination of extreme weather, high abundances
of ticks carrying Babesia-piroplasm, and sup-
pressed immunity to canine distemper virus led
to widespread mortality of lions (Panthera leo)
(81). In marine systems, field evidence shows
that corals are increasingly susceptible to white
band disease at higher temperatures, leading to
declines in two of the most important reef-building
acroporid (branching) corals in the western At-
lantic (82).

Species
Distribution

One of the most rapid responses observed for
marine, freshwater, and terrestrial species is a
shift in their distributions to track optimal hab-
itat conditions (71, 83, 84). Across land and aquatic
ecosystems, species have expanded their lead-
ing (cold limit) edge by 19.7 km per decade, with
marine species expanding by 72 km per decade
compared with 6 km per decade in terrestrial
species (37). The distributions of many marine
taxa have shifted at higher velocities than those
of terrestrial taxa (37) because areas with rapid
changes in climate extend across broader re-
gions of the ocean than on land, and connectiv-
ity in marine environments tends to be high (85).
To illustrate this point, corals around Japan have
shifted their range by up to 14 km per year over
the past 80 years (86), and in waters off the south-
east coast of Australia, intertidal invertebrate
species have shifted their geographic distribu-
tions polewards at an average rate of 29 km
per decade (87). Where connectivity allows for
dispersal, some freshwater fishes are capable
of shifting at rates comparable with those of
marine and terrestrial taxa (88), but mean shifts
by river fishes in some regions have been in-
sufficient to compensate for measured temper-
ature rises (89).
There has been a consistent overall trend for

tropical, warm-adapted species to expand their
ranges into environments previously dominated
by temperate cold-tolerant species (“tropicaliza-
tion”) (90). A similar phenomenon has been
documented in the Arctic, where boreal fish com-
munities have responded to warming in the
Barents Sea by shifting northward, resulting in a

high turnover in Arctic fish communities (“bore-
alization”) (91). Similarly, on land, increased mini-
mum temperatures have driven rapid changes
in the range size (as well as distribution) of Swe-
dish birds, with northern species retracting and
southern species expanding northward (92).
In addition to latitudinal changes, many ob-

served shifts in species distributions have occured
across elevation gradients. In the mountains of
New Guinea, birds have shifted their distribu-
tions upslope by 95 to 152 m from 1965 to 2013
(93). A similar upslope shift was observed in re-
cent decades in mountainous stream-dwelling
fish in France (89), North American plants (94),
and Bornean insects (95). An analogous response
has been the shift to deeper, colder waters among
some marine fishes (91).
In some cases, species have shown no response

or even downhill shifts in their distributions
(96) or increased frequency of range disjunction
rather than poleward or upward range shifts
(97). Savage and Vellend (98) found upward range
shifts in North American plant species and an
overall trend toward biotic homogenization from
1970 to 2010, but their study also documents con-
siderable time lags between warming and plant
responses (99, 100). Delayed community responses
to increasing temperature may be in part due to
the buffering effects of microhabitats (101, 102)
and possibly moisture, which is a critical, but
less often studied, driver in the redistribution of
species (103). For example, Crimmins et al. ob-
served downhill movements for North American
plants under climate change over an 80-year pe-
riod, which they attribute to changes in water
balance rather than temperature (104).

Community
Interspecific relationships

As a by-product of the redistribution of species
in response to changing climate, existing inter-
actions among species are being disrupted, and
new interactions are emerging (105, 106). These
novel biotic interactions can exacerbate the impacts
of abiotic climate change (107, 108). Woody plants
are invading arctic and alpine herb-dominated
communities in response to rapid warming in
recent decades, leading to secondary shifts in
distribution of other plants and animals (92).
In the Sierra Nevada Mountains of California,
Tingley and Beissinger found high levels of
avian community turnover during the past
100 years at the lowest and highest elevations
(109), and in Greece, Sgardeli et al. found sim-
ilar patterns of temperature-driven turnover in
butterfly communities (110). There are surpris-
ingly few studies of observed impacts of cli-
mate change on competitive interactions (108).
In one example from Sweden, Wittwer et al.
found that among four bird species occupying
the same ecological guild, resident birds were
able to adapt to warmer temperatures and out-
compete the sole long-distance migrant, Ficedula
hypoleuca (111).
New interactions among species can also lead

to trophic disruptions such as overgrazing. In
western Australia, for example, overgrazing of

subtropical reefs by the poleward spread of
tropical browsing fish has suppressed recovery
of seaweeds after temperature-induced mortal-
ity (112). These types of trophic disruptions are
escalating, with range shifts by tropical herbiv-
orous fishes increasing herbivory rates in sub-
tropical and temperate coastal ecosystems where
seaweeds are the dominant habitat-forming
taxa (90).
Phenological mismatches have been observed

between butterflies and their annual host plants,
with the plants dying before the insect larvae
were ready to enter diapause (113). Similarly, an
analysis of 27 years of predator-prey data from
the UK showed asynchronous shifts between the
tawny owl (Strix aluco) and its principle prey,
the field vole (Microtus agrestis), which led to re-
duced owl fledging success (114). In Lake Wash-
ington, United States, spring diatom blooms
advanced by over 20 days since 1962, resulting
in predator-prey mismatches with their main
grazer, the water flea (Daphnia pulicaria), and
population declines in the latter (60). In Cana-
dian Arctic lakes, asynchronous shifts in diatom
blooms resulted in generalist water fleas being
replaced by more specialist species (115). At
higher trophic levels, warming has affected the
fry and the juvenile life-history stages of lake
char (Salvelinus umbla) via direct impacts on
their zooplankton and vendace (Coregonus alba)
food sources (116).

Productivity

Changes in productivity are one of the most
critical impacts of climate change across aquatic
and terrestrial ecosystems (117, 118). In marine
systems, climate-mediated changes in chlorophyll-a
concentrations as a proxy of phytoplankton bio-
mass have been highly variable (119). Depending
on location, these include both dramatic in-
creases and decreases in abundance as well as
changes in phenology and distribution of phyto-
plankton over the past several decades. In a
global study of phytoplankton since 1899, an
~1% decline in global median phytoplankton
per year was strongly correlated with increases
in sea surface temperature (120), whereas in the
Antarctic Peninsula, phytoplankton increased
by 66% in southern subregions and decreased
by 12% in northern subregions over a 30-year
period. These conflicting observations in the
Antarctic are in part linked to changes in sea
surface temperature but also changes in ice cover,
cloudiness, and windiness, which effect water-
column mixing (121).
In deep tropical freshwater lakes dominated

by internal nutrient loading through regular
mixing, warmer surface waters confer greater
thermal stability, with reduced mixing and re-
turn of nutrients to the photic zone, substan-
tially decreasing primary productivity (122),
phytoplankton growth (123), and fish abun-
dance (122). In contrast, eutrophication effects
are exacerbated by higher temperatures in shal-
low lakes, resulting in increased productivity
and phytoplankton and toxic cyanobacteria
blooms (124).
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Globally, terrestrial plant growth has increased
with increasing temperatures and CO2 levels.
This may in part explain the on average 6% in-
crease in net primary productivity (NPP) from
1982 to 1999 (125), although these changes in
NPP may also be related to natural variation in
El Niño–La Niña cycles (126). However, responses
are highly variable, and some terrestrial systems
are not experiencing increased productivity owing
to either extreme temperatures or lack of water.
Severe short-term droughts in climatically sta-
ble rainforest environments are unusual but in
recent years have increased in frequency. These
events have led to changes in forest canopy struc-
ture in Amazonia (127) and decreases in above-
ground woody and leaf biomass in the Congo
basin (128). Across large expanses of the Amazon,
there has been an overall reduction in above-

ground biomass owing to increased climate var-
iability over the past three decades (129).

Impacts across ecosystems

All three biotic realms (terrestrial, freshwater, and
marine) are being affected by climate change, and
the evidence summarized here reveals that these
impacts span the biological hierarchy from genes
to communities. Of the 94 processes considered,
we found that 82% have evidence of impact by
climate change, and this has occurred with just
1°C of average warming globally (Fig. 1). Impacts
range from genetic and physiological changes
to responses in population abundance and dis-
tribution (Fig. 2).
The fact that evidence is missing for some

processes is more likely to reflect data deficien-
cies than the absence of any response to climate

change. We only considered field-based case
studies that report changes in the processes
through time. For many components, such as
genetics (23) and physiology (29), there is strong
evidence from experiments on a wide range of
species that individuals and populations can
and likely will respond to climate change. Thus,
even though we found compelling evidence
of widespread responses across the biological
hierarchy, we still consider our discussion of im-
pacted processes to be conservative. To illustrate
this point, Box 1 shows the range of observed re-
sponses in the water flea Daphnia, which spans
the entire hierarchy of biological organization.

Ecosystem state shifts

As ecological systems continue to accumulate
stress through compromised ecological processes

SCIENCE sciencemag.org 11 NOVEMBER 2016 • VOL 354 ISSUE 6313 aaf7671-5

Fig. 2. Climate impacts on ecological processes. Examples of ecological components and processes affected by climate changes across marine,
freshwater, and terrestrial ecosystems (fig. S1 and table S1).
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either directly from climate change or interac-
tively with other forced disturbances (discus-
sion is provided in the supplementary materials),
diminished resilience may lead to ecological re-
gime shifts—in which one ecosystem state shifts
to an alternative and potentially undesirable sta-
ble state. For example, some reefs are transi-
tioning from coral- to algal-dominated states as
a consequence of mass coral mortality (130),

whereas kelp forests are turning into rocky bar-
rens in temperate seas (90, 131, 132). In lakes,
climate change has increased the risk of regime
shifts from clear-water to turbid states and in-
creased the occurrence of cyanobacteria blooms
(124). If sufficient community-based processes
are affected at regional scales, wholesale biome
shifts can occur such as has been observed in
Alaska, where tundra is transitioning to boreal
conditions (133). These are clear signs of large-
scale ecosystem change and disruption, in which
disequilibrium rapidly pushes the system into a
new state (134).

Using ecology to better understand
climate change impacts on human
well-being
Threats to production

The impacts of climate change on marine fish-
eries have major consequences for human so-
cieties because these currently provide ~17%
of the global protein for people (135). There is,
however, no current consensus on the costs and
benefits of the ongoing global redistribution
of fisheries because trends are highly variable.
In the Arctic, commercially important fish, such
as Atlantic cod (Gadus morhua) and walleye pol-
lock (Theragra chalcogramma), have increased in
biomass primarily because of increases in plank-
ton production from reduced sea ice (136, 137),
whereas changes in fish biomass in the Southern
Ocean are less clear (138). In Switzerland, which
has experienced twice the average global temper-
ature increase, trout catches have been halved
over two decades because of rising temperatures
in Alpine streams (77).
Changes in total marine productivity are not

just attributed to abundance shifts but also mor-
phological shifts. Indeed, some fish species ap-
pear to be shrinking, but attributing this solely to
ocean warming is difficult because size-dependent
responses can be triggered by commercial fishing
as well as long-term climate change (139). How-
ever, long-term trend analyses show convincingly
that eight commercial fish species in the North
Sea underwent simultaneous reductions in body
size over a 40-year period because of ocean warm-
ing, resulting in 23% lower yields (140). Reduced
body size in fish is also being recorded in lakes
and rivers throughout Europe and has been
linked to increased temperature and climate-
induced shifts in nutrient inputs (141, 142).
Impacts on plant genetics and physiology are

influencing human agricultural systems. For
example, yields in rice, maize, and coffee have
declined in response to the combined effects
of rising temperatures and increasing precipita-
tion variability over past decades (143–145).
Genetics is being used to counteract decreasing
yields in some key crops such as wheat [for which,
globally, yields have declined by 6% since the
early 1980s (146)] through crossing domesticated
crops with wild relatives to maintain the evolu-
tionary potential of varieties (147). Yet, some im-
portant wild strains are also showing signs of
impact from climate change. Nevo et al. docu-
mented high levels of genetic changes in the

progenitors of cultivated wheat and barley in
Israel over the past 28 years (148). These wild
cereals exhibited landscape-level changes in
flowering time and a loss of genetic diversity in
response to increasing temperatures.
Losing genetic resources in nature may un-

dermine future development of novel crop var-
ieties (149) and compromise key strategies that
humans use to adapt to climate change. One
such strategy is to use assisted gene flow, the
managed movement of individuals or gametes
between populations to mitigate local maladap-
tation in the short and long term (150). Where
genetic introgression—the movement of genetic
material from one species into the genome of
another—can occur from unexploited natural pop-
ulations to managed or exploited populations
that are poorly adapted to warmer or drier con-
ditions, adaptive changes may be facilitated (147),
as in white spruce (Picea glauca), a tree commonly
harvested for timber (151). Human-assisted evolu-
tion may also be a key strategy in maintaining reef-
dependent fisheries by accelerating and enhancing
the stress tolerance of corals (152).
Phenological changes due to milder winters

are influencing crop and fruit production (153).
Climate change has reduced winter chill events
in temperate agricultural areas (154), which
can desynchronize male and female flowers and
trigger delayed pollination, delayed foliation,
and reduced fruit yield and quality. To counter
this, tree crop industries have developed adap-
tation measures such as low-chill cultivars with
dormancy-breaking chemicals. For example, the
“UFBest” peach requires four times fewer chill
days than cultivars frommore temperate climates
(155). Advances in the timing of budding, flower-
ing, and fruiting of plant species has induced
earlier harvesting periods in some countries
[such as Japan (156)].
Pollination is a key process linked to yields for

a large number of crops. The short-lived, highly
mobile insect species that provide pollination ser-
vices to numerous crops have responded rapidly
to changing climates by shifting their ranges
throughout North America and Europe (157). Ad-
ditionally, over the past 120 years, many plant-
pollinator networks have been lost with overall
decline in pollination services, which is attributed
to a combination of habitat loss, pollution, and
climate warming (158). Yet, observed changes in
the phenology, abundance, and distribution of com-
mon pollinators have not been directly linked to
declines in yields of animal-pollinated crops.
This is likely due to limited data that directly
link pollination services to crop yield over time
and may, in part, reflect resilience provided by
the diversity of insect species that pollinate
many crops (159, 160). More specialized pollina-
tion systems are expected to be more vulnerable
to climate change. Humans have adapted to the
declines in native pollinators by transporting
domesticated pollinators to crop locations.

Pest and disease threats

Climate-induced ecosystem-level changes, such
as forest die-offs, have an obvious impact on
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Box 1. A complete hierarchy of climate
change impact in one model system: the
water flea Daphnia. Combining time-series
data with experimental approaches can lend
insights to the breadth of climate change im-
pacts. For water fleas of the genus Daphnia,
for instance, there is evidence for responses
to temperature at all levels of biological or-
ganization. Daphnia are important grazers
in lakes and ponds (180). They adapt to tem-
perature increase through genetic changes
in thermal tolerance (18), body size, and life
history traits (181, 182). In the laboratory,
Daphnia exhibit phenotypic plasticity in phys-
iology to changing temperatures [for exam-
ple, hemoglobin quality and quantity (183)
or metabolic activity (184)], behavior [such
as swimming activity (184)], life history traits
(185), and body size (182). Daphnia adjust
their phenology (186) and abundance (187)
in response to increases in temperature, which
results in mismatches with phytoplankton
dynamics (60). Warmer, drier weather over
two decades can lead to expanded distri-
butions and increased colonization capacity
(188). Temperature influences interactions
of Daphnia with predators (189) and para-
sites (190), and adaptation to increased tem-
perature influences competitive strength
(185). In the absence of fish, high abundances
of Daphnia in +4°C heated mesocosms ex-
ert strong top-down control on phytoplank-
ton (191).
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people, with a reduction in timber supplies and
carbon sequestration, and changes in water quality
and watershed volume (161–163). Several native
insect species from North America, with no prior
records of severe infestation, have recently emerged
as severe pathogens of forest resources because of
changes in population dynamics. These include
the Aspen leaf miner (Phyllocnistis populiella),
the leafblotch miner (Micrurapteryx salicifoliella),
and the Janet’s looper (Nepytia janetae), which
have decimated millions of hectares of aspen,
willows, and spruce-fir forests since the early
1990s (164). Known pests such as mountain and
southern pine beetles (Dendroctonus frontalis and
D. ponderosae, respectively) and spruce beetles
(D. rufipennis) have recently expanded their dis-
tribution and infestation intensity on commer-
cially important pine and spruce trees (161, 164).
These outbreaks may increase in the future be-
cause hundreds of plant pest and pathogen spe-
cies have shifted their distributions 2 to 3.5 km
year−1 poleward since the 1960s (165).
An emerging threat to human health under

climate change is vector-borne disease (166).
Vectors that have shifted their ranges and abun-
dance can be found in marine, freshwater, and
terrestrial systems. For example, in marine sys-
tems, unprecedented warming in the Baltic Sea
led to emergence of Vibrio infections in North-
ern Europe (167, 168), a geographic locality
that had limited prior occurrence of this water-
borne bacterial pathogen. Mosquitoes (e.g., Aedes
japonicus, A. aegypti, A. albopictus) are extending
their distribution into areas that are much warmer
than their original habitats. As a result of eco-

logical adaptation, mosquitos have become more
competent vectors for spreading diseases such
as chikungunya, dengue, and possibly the emerg-
ing Zika virus (169). Last, in terrestrial systems
Levi et al. found that the nymph stage of the
Lyme disease–carrying blacklegged tick (Ixodes
scapularis) exhibited an overall advancement in
nymph and larvae phenology since 1994, shifting
the timing of greatest risk for pathogen transfer
to humans to earlier in the year (170).

Losing intact ecosystems
and their function

Changes in ecological processes might com-
promise the functionality of ecosystems. This is
an important consideration because healthy sys-
tems (both terrestrial and marine) sequester sub-
stantial amounts of carbon (171), regulate local
climate regimes (172), and reduce risks associated
with climate-related hazards such as floods, sea-
level rise, and cyclones (173). In island and coastal
communities, coral reefs can reduce wave energy
by an average of 97% (174), and coastal ecosystems
such asmangroves and tidal marshes buffer storms
(175), while on land intact native forests are im-
portant in reducing the frequency and severity of
floods (176). In many cases, maintaining function-
ing systems offers more sustainable, cost-effective,
and ecologically sound alternatives than conven-
tional engineering solutions (16).

Science and action in a warmer world

The United Nations Framework Convention on
Climate Change (UNFCCC) and the recent COP21
agreement in Paris presently offer the best

opportunity for decisive action to reduce the
current trajectory of climate change. This latter
agreement set global warming targets of 1.5 to
2°C above preindustrial levels in order to avoid
“dangerous climate change,” yet the current 1°C
average increase has already had broad and
worrying impacts on natural systems, with ac-
cumulating consequences for people (Table 1).
Minimizing the impacts of climate change on
core ecological processes must now be a key
policy priority for all nations, given the adop-
tion of the UN Sustainable Development Goals
aiming to increase human well-being. This will
require continued funding of basic science focused
on understanding how ecological processes are
interacting with climate change, and of programs
aimed at supporting ecosystem-based adaptations
that enhance natural defences against climate haz-
ards for people and nature and ensure ongoing
provision of natural goods and services (177).
We must also recognize the role that intact

natural ecosystems, particularly large areas,
play in overcoming the challenges that climate
change presents, not only as important reposi-
tories for carbon but also because of their ability
to buffer and regulate local climate regimes and
help human populations adapt to climate change
(16, 173). These systems are also critical for main-
taining global biodiversity because the con-
nectivity provided by large, contiguous areas
spanning environmental gradients—such as alti-
tude, depth, or salinity—will maximize the poten-
tial for gene flow and genetic adaptation while
also allowing species to track shifting climate
spatially (178).
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Table 1. Climate change consequences for humans. Affected ecological processes have direct consequences in food systems and human health.

Organism Population Species Community

Genetics, physiology,

morphology
Phenology, dynamics Distribution

Interspecific relationships,

productivity
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Resource security Rapid genetic adaptation to

climate change in timber

species

Increased herbivory on crops

and timber by pests

Overall distribution shifts in

marine and freshwater

fisheries

Decline in plant-pollinator

networks and pollination

services
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Decreased crop yields in hot

climates and increases in

cool climates

Decreased genetic diversity

and altered flowering

time in wild cereals and

novel crop varieties

Reduced range size or changes

in pollinator abundance

Novel pests and invasive

species

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Increased weed-crop

competition and parasite-

livestock interactions

Reduced fruit yields from

fewer winter chill events

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Decreased yield in fisheries

from reduced body size

Reduced productivity in

commercial fisheries
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Human health Decline in reef calcifiers

threatens coastal

communities; loss of

protection from storm

surges and loss of

food/protein sources

Increased costs and risk to

subsistence communities

from loss of sea ice and

permafrost

Expanding and/or new

distributions of disease

vectors

Increased human-wildlife

conflicts

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Rapid adaptation of disease

vectors to new climatic

conditions

Redistribution of arable land Novel disease vectors

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .
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The overriding priority of the UNFCCC is to set
in motion a sustained global reduction in green-
house gas emissions. This must be achieved
alongside an improvement in our understanding
of key ecological processes that form the foun-
dation of biological and human systems, and in
tandem with efforts to conserve the natural hab-
itats in which such ecological processes operate.
It is now up to national governments to make

good on the promises they made in Paris through
regular tightening of emission targets, and also
to recognize the importance of healthy ecosys-
tems in times of unprecedented change (179).
Time is running out for a globally synchronized
response to climate change that integrates ade-
quate protection of biodiversity and ecosystem
services.
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